EVALUATION OF HIGHLY ACTIVE CYTOTOXIC AGENTS IN THE SERIES OF NOVEL DERIVATIVES OF N-HYDROXY(AND N-ALKOXY)- ω (BENZENESELANYL OR 2-BENZOSELENAZOLYLSULFANYL)ALKANAMIDINES

Edgars Abele, Kira Rubina, Lena Golomba, Irina Shestakova, Elina Jaschenko, Veronika Bridane, Ramona Abele
Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia, E-mail: abele@osi.lv

Abstract

: Synthesis of novel derivatives of N-hydroxy (and N-alkoxy)- ω (benzeneselanyl)alkaneamidines and 2-benzoselenazolylsulfanyl)alkaneamidines as potential cytotoxic agents was carried out in two or three steps. 6-(Benzoselenazol-2-ylsulfanyl)-Nhydroxyhexanamidine exhibit high activity in vitro on monolayer tumor cell lines: MG-22A (mouse hepatoma) and HT-1080 (human fibrosarcoma).

Keywords: N-hydroxy (and N-alkoxy)- ω-(benzeneselanyl)alkaneamidines, N-hydroxy- ω-(2benzoselenazolylsulfanyl)alkaneamidines, phase transfer catalysis, mouse hepatoma (MG22A) cell line, human fibrosarcoma (HT-1080) cell line, cytotoxicity.

INTRODUCTION

Selenium containing oximes were widely investigated as valuable intermediates in organic synthesis ${ }^{\text {I }}$. Beside this selenium compounds were used in the cancer chemoprevention ${ }^{\text {II }}$ and tumor cell invasion ${ }^{\text {III }}$. Selenium containing cobaloximes were proposed as B_{12} model compounds ${ }^{\text {IV }}$. 1,3-Selenazoles exhibit antibiotic and cancerostatic activity ${ }^{\mathrm{V}}$. Antitumor and cytotoxic activity 4-methyl-1,2,3-selenadiazole-5-carboxylic acid amides ${ }^{\text {VI }}, 3-\mathrm{C}, \mathrm{N}, \mathrm{S}, \mathrm{Se}$ substituted benzo[b]selenophene ${ }^{\mathrm{VII}}$ and di(3-indole)selenides ${ }^{\mathrm{VIII}}$ also were described.

The pharmacological model of the studied type of anticancer agents consists of a aromatic ${ }^{\text {IX }}$ cap group able to interact with the rim space at the entrance of the catalytic tunnel of the enzyme linked to a hydrophobic spacer (for example, $\mathrm{C}_{3}-\mathrm{C}_{5}$-alkyl) through a polar connection unit (amide group, etc.). At the end of the hydrophobic spacer a hydroxylamine or amide group (binding group, BG) assures inhibition of enzyme (for example, epidermal growth factor receptor tyrosine kinase ${ }^{\mathrm{X}}$). However, the amidoxime moiety as BG is practically not described in literature. A number of reviews are devoted to the chemistry and biological activity of heterocyclic oximes and their derivatives ${ }^{\mathrm{XI}}$. The aim of the research is to obtain and to investigate cytotoxicity of a novel class of oximes - derivatives of N hydroxy (and N -alkoxy)- ω-(benzeneselanyl or 2-benzoselenazolylsulfanyl)alkaneamidines.

RESULTS AND DISCUSSION

The general synthetic route chosen for preparation of N-hydroxy- ω (benzeneselanyl)alkaneamidines 4-6 and N -hydroxy- ω-(2-benzoselenazolylsulfanyl)alkaneamidines 16-18 included two steps. Thus, alkylation of benzeneselenol or 2mercaptoselenazole with 1-bromo- ω-cyanoalkanes was successfully realized in the PTC (phase transfer catalytic) system solid $\mathrm{K}_{2} \mathrm{CO}_{3} / 18$-crown-6 / toluene. Products 1-3, 13-15 were isolated in 72-99\% yields (Scheme 1).

1, $\mathbf{3}(\mathrm{n}=2)$; 2, $5(\mathrm{n}=3) ; \mathbf{3 ,} 6(\mathrm{n}=4)$

Scheme 1

The reaction of nitriles 1-3, 13-15 with hydroxylamine hydrochloride in the presence of NaOH in refluxing aqueous ethanol afforded novel E-amidoximes 4-6, 16-18 in 44-59\% yields (Scheme 1, See Experimental). Alkylation of amidoximes 5 and $\mathbf{6}$ was carried out in PTC system alkyl halides/ solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ / 18-crown-6 in refluxing toluene. Oxime O-alkyl derivatives $\mathbf{7}$ and $\mathbf{1 0}$ were isolated as pure E-isomers in 21-59\% yields.

13, 16 ($\mathrm{n}=1$); 14, 17 ($\mathrm{n}=2$); 15, 18 ($\mathrm{n}=3$)

Scheme 2
Beside oxime and oxime O-ether derivatives some additional derivatives were prepared as masked oxime ether derivatives. At first, palladium-catalyzed one-flask method for the preparation of selenium containing 3-substituted 1,2,4-oxadiazepines $\mathbf{1 2}$ and $\mathbf{1 9}$ directly from corresponding E-amidoximes 6 and 16 and o-iodobenzyl bromide was elaborated. 2-Chloro-3-[3-(6-phenylselanyl-hexyl)-[1,2,4]oxadiazol-5-yl]-pyridine (11) were prepared in 78\% yield from N-hydroxy-7-phenylselanylheptanamidine (6), 2-chloronicotinoyl chloride and $\mathrm{Et}_{3} \mathrm{~N}$ in refluxing toluene.
Cytotoxic activity of N -hydroxy- ω-(hetarylmethoxy or hetarylthio)-alkaneamidines $\mathbf{1 - 1 8}$ was tested in vitro on monolayer tumor cell lines - MG-22A and HT-1080. The activity of high effective compounds was determined also on another cell lines (Table 1). Concentrations providing 50% of tumor death effect $\left(\mathrm{IC}_{50}\right)$ were calculated according to the known procedure using 96 well plates.
The experimental evaluation of cytotoxicity is presented in Table 1. The preliminary analysis of the structure-activity relationship for cytotoxic activity clearly indicated a strong influence of aromatic or heteroaromatic substituent (Ar) on toxic effects in vitro. In the 2benzoselenazolylsulfanyl derivative $\mathbf{1 6 - 1 8}$ the IC_{50} values range from $2-3 \mu \mathrm{~g} / \mathrm{mL}$ (compound 18 on human fibrosarcoma HT - 1080 cell line) to $18 \mu \mathrm{~g} / \mathrm{mL}$ for oxime 16. Beside this, N -hydroxy-7-phenylselanylheptanamidine (6) exhibit high activity on HT-1080 cancer line $\left(\mathrm{IC}_{50} 5 \mu \mathrm{~g} / \mathrm{mL}\right.$). It clearly indicates that the optimal length of the alkyl chain (hydrophobic spacer) between the aromatic ring and the oxime group is C_{5} or C_{6}. Compound $\mathbf{1 8}$ also exhibit high activity on MG-22A cancer line ($\mathrm{IC}_{50} 2 \mu \mathrm{~g} / \mathrm{mL}$) (Table 1).
Interestingly, that 2-benzoselenazolyl derivative 18 exhibit higher cytotoxicity on the both above cancer cell lines than N-hydroxy-6-phenylselanylhexanamidine (5) containing similar length of the alkyl chain (hydrophobic spacer).
N-Methoxy-6-phenylselanylhexanamidine (7) exhibit high activity on the HT-1080 and MG22 A cancer cell lines ($\mathrm{IC}_{50} 1 \mu \mathrm{~g} / \mathrm{mL}$) using tri(4-dimethylaminophenyl)methyl chloride (crystal violet: CV) test. It means that this compound influence oxidative-reducing activity of ferments in the mitochondria. Our previous results showed that introduction benzo[4,5]imidazo[2,1-b]thiazol-3-ylmethoxy substituent in oxime derivatives diminishes acute toxicity. Our investigations show that acute toxicity LD_{50} was diminished in most of the
cases. However, cytotoxicity of oxime ethers $\mathbf{8 - 1 0}$ in comparison with unsubstituted oxime $\mathbf{6}$ was considerably diminished. 2-Chloro-3-[3-(6-phenylselanyl-hexyl)-[1,2,4]oxadiazol-5-yl]pyridine (11) was essentially unactive on the HT-1080 and MG-22A cancer cell lines.
Beside this, compound 19 formally is masked amidoxime O-benzyl ether. Thus, compound 19 exhibit high activity on the MG-22A cancer cell line ($\mathrm{IC}_{50} 4 \mu \mathrm{~g} / \mathrm{mL}$). Corresponding 4-(benzoselenazol-2-ylsulfanyl)-N-hydroxybutyramidine (16) exhibit considerably less cytotoxicity on this cancer line ($\mathrm{IC}_{50} 12 \mu \mathrm{~g} / \mathrm{mL}$).

Acute toxicity of synthesized compounds was tested on 3T3- Swiss Albino mice embrio fibroblasts. In general, compounds 4-12 and 16-19 exhibit middle toxicity in the range $\mathrm{LD}_{50} 443-2000 \mathrm{mg} / \mathrm{kg}$ (Table 1).

Table 1. In vitro cell cytotoxicity of derivatives of N -hydroxy(or alkoxy)- ω -

Compound	3 T 3	HT-1080		MG-22A	
	$\begin{array}{\|l\|l\|} \hline \mathrm{LD}_{50} \\ \mathrm{mg} / \mathrm{kg} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{IC}_{50} \\ & \mathrm{CV} \end{aligned}$	$\begin{aligned} & \hline \mathrm{IC}_{50} \\ & \mathrm{MTT} \end{aligned}$	$\begin{aligned} & \hline \mathrm{IC}_{50} \\ & \mathrm{CV} \end{aligned}$	$\begin{aligned} & \hline \mathrm{IC}_{50} \\ & \text { MTT } \end{aligned}$
	1715	23	18	21	18
	656	9	3	3	9
	539	4	6	4	7
 7	1078	1	32	1	22
 8	1369	16	8	12	18

(

* No cytotoxic effect

EXPERIMENTAL

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were registered on Varian Mercury BB instrument (400 and 100 MHz , respectively) in CDCl_{3}. The residual proton signal of the solvent ($\delta=7.26 \mathrm{pm}$) was used as the reference. Electron impact ionization mass spectra were recorded on Agilent Technologies 5975C MSD detector at 70 eV . Melting points were detected on Boetius
aparatos equipped with visual detector PHMH 05. The progress of the reactions was monitored by TLC Silica gel $60 \mathrm{~F}_{254}$ aluminium sheets using hexane: ethyl acetate in the different mixtures as eluent. 2-Iodobenzyl bromide, 1-bromo- ω-cyanoalkanes (AlfaAesar), 18-crown-6 (Acros), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$) (Acros), Xantphos (Acros), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (Acros), benzeneselenol (Aldrich) and dioxane (extra dry over molecular sieves, Acros) were used without purification. 1-(Benzeneselanyl or 2-benzoselenazolylsulfanyl)- ω-cyanoalkanes 1-3 and 1315 were prepared from benzeneselenol or 2-mercaptoselenazole in the system solid 1-bromo-ω-cyanoalkane (1 equivalent) / $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equivalents)/18-crown-6 ($5 \mathrm{~mol} . \%$) / PhMe at room temperature according literature ${ }^{\mathrm{LXf}}$.
General procedure for the synthesis of \mathbf{N}-hydroxy- ω-(benzeneselanyl or 2-benzoselenazolylsulfanyl)-alkanamidines 4-6 and 16-18. A solution of 1-(benzeneselanyl or 2-benzoselenazolylsulfanyl)- ω-cyanoalkane $\mathbf{1 - 3}, \mathbf{1 3 - 1 5}$ (16.7 mmol), hydroxylamine hydrochloride ($3.46 \mathrm{~g}, 50.2 \mathrm{mmol}$) and $\mathrm{NaOH}(2.01 \mathrm{~g}, 50.2 \mathrm{mmol})$ in mixture of $\mathrm{EtOH}(15$ $\mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was refluxed for 24 h . Reaction mixture was evaporated to dryness under reduced pressure. Product was extracted with a mixture of CHCl_{3} : $\mathrm{EtOH} 10: 1(100 \mathrm{ml})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent CHCl_{3} : EtOH 20:1 or 10:1) to obtain desired products 4-6 and 16-18. Compounds 4-6 and 16-18 were isolated as pure E-isomers.
N-Hydroxy-5-phenylselanylpentanamidine (4). Yield 59\%. Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.64-1.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}\right) ; 2.12\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.91(\mathrm{t}$, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{SeCH}_{2}$), 4.48 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $7.23-7.27$ un $7.44-7.49$ (both m, $5 \mathrm{H}, \mathrm{Ph}$). ${ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 26.77,27.60,29.60,31.67,127.60,129.27,130.51$, 132.81, 152.92. Mass-spectrum, $m / z\left(I_{\text {rel }}, \%\right): 272\left(\mathrm{M}^{+}+1,70\right), 271\left(\mathrm{M}^{+}, 90\right), 213$ (15), 115 (100). Found, \%: C 48.55; H 5.71; N 10.11. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OSe}$. Calculated, \%: C 48.71; H 5.95; N 10.33 .

N-Hydroxy-6-phenylselanylhexanamidine (5). Yield 56%. White crystals, m.p. $76{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.41-1.71\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right) ; 2.08(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, CCH_{2}), $2.86\left(\mathrm{t}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right.$), $4.52\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.19-7.46(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR ($\left.100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 26.07,27.56,29.11,29.75,31.07,126.62,128.96,130.50$, $130.55,153.70$. Mass-spectrum, $m / z\left(I_{\text {rel }}, \%\right): 286\left(\mathrm{M}^{+}+1,100\right), 285(70), 227(10), 113$ (42). Found, \%: C 50.42; H 6.21; N 9.67. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSe}$. Calculated, \%: C 50.53; H 6.36; N 9.82.
N-Hydroxy-7-phenylselanylheptanamidine (6). Yield 46%. White crystals, m.p. $76-78^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.32-1.72\left(\mathrm{~m}, 8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right), 2.10(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}$, CCH_{2}), $2.89\left(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right), 4.48\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.22-7.29$ and $7.44-7.49$ (abi m, $5 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 26.40,27.76,28.40,29.36,29.89,31.12$, $126.58,128.94,130.52,132.35,153.82$. Mass-spectrum, $m / z\left(I_{\text {rel }}, \%\right): 300\left(\mathrm{M}^{+}+1,75\right), 299$ (100), 241 (10). Found, \%: C 52.21; H 6.54; N 9.27. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OSe}$. Calculated, \%: C 52.17; H 6.74; N 9.36 .
4-(Benzoselenazol-2-ylsulfanyl)-N-hydroxybutyramidine (16). Yield 52\%. White crystals, m.p. $108^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.66-1.77,1.86-1.92$ and 2.93-2.99 (all m, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 4.64 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.82, 6.99 and 7.41 (all m, $4 \mathrm{H}, \mathrm{Ph}$), 8.41 (bs, 1 H , $\mathrm{NOH}) .{ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 26.39,29.87,33.07,122.79,124.30$, $126.16,138.11,153.09,153.20,154.53,168.26$. Mass-spectrum, $m / z\left(I_{\text {rel }}, \%\right): 314\left(\mathrm{M}^{+}, 100\right)$. Found, \%: C 42.30; H 4.00; N 13.24. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OSSe}$. Calculated, \%: C 42.04; H 4.17; N 13.37.

5-(Benzoselenazol-2-ylsulfanyl)-N-hydroxypentanamidine (17). Yield 50%. White crystals, m.p. $85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.60-1.81$ and 1.97-2.05 (both m, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 5.36 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.27 and 7.43 (both $\mathrm{t}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{Ph}$), 7.83 and
8.04 (both d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{Ph}$), 8.72 (bs, $1 \mathrm{H}, \mathrm{NOH}$). ${ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 25.57,28.49,30.59,33.56,122.83,124.26,126.13,138.06,153.51,154,60,154.63$, 168.57. Mass-spectrum, $m / z\left(I_{\text {rel }}, \%\right): 328\left(\mathrm{M}^{+}, 100\right)$. Found, \%: C 43.81; H 4.51; N 12.91. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OSSe}$. Calculated, \%: C 43.90; H 4.61; N 12.80 .
6-(Benzoselenazol-2-ylsulfanyl)-N-hydroxyhexanamidine (18). Yield 44\%. White crystals, m.p. $85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.58$ and 1.85 (both m, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.16 and 3.32 (both $\mathrm{t}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}$ and SCH_{2}), $4.50\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.20$ and 7.38 (both $\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}$), $7.75-7.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 26.00,28.04,28.76,31.01,33.95,122.83,124.23,126.11,138.02,153.69,153.72$, 154.69, 168.73. Mass-spectrum, $m / z\left(I_{\text {rel }}, \%\right): 342\left(\mathrm{M}^{+}, 100\right)$. Found, \%: C 45.58; H 5.02; N 12.41. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OSSe}$. Calculated, \%: C 45.61; H 5.01; N 12.28.

General procedure for the synthesis of N -alkoxy- ω-(benzeneselanyl)-alkanamidines $\mathbf{7 - 1 0}$ from N-hydroxy- ω-(benzeneselanyl)-alkanamidines 5-6 under phase transfer catalysis conditions. A suspension of N-hydroxy- ω-(benzeneselanyl)-alkanamidines 5 or 6 (2.2 mmol), alkyl halide (2.2 mmol), 18-crown-6 $(0.058 \mathrm{~g}, 0.22 \mathrm{mmol})$ and solid $\mathrm{K}_{2} \mathrm{CO}_{3}(1.21 \mathrm{~g}$, 8.8 mmol) in toluene (30 ml) was refluxed for 18 h . Reaction mixture was filtered and filtrate was evaporated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel (eluent hexane: EtOAc from $1: 1$ to $0: 1$) to obtain desired products $\mathbf{7 - 1 0}$. Compounds $\mathbf{7 - 1 0}$ were isolated as pure E-isomers.
N-Methoxy-6-phenylselanylhexanamidine (7). Yield 59\%. Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.42-1.69\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right) ; 2.03\left(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.87(\mathrm{t}, 2 \mathrm{H}, J$ $=6.4 \mathrm{~Hz}, \mathrm{SeCH}_{2}$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}\right.$), 7.20-7.25 and 7.42-7.47 (both $\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph} .{ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 24.83,26.02,27.56,29.10,29.73,31.05,126.63,128.96$, 130.40, 132.39, 153.79. Mass-spectrum, m/z ($\left.\mathrm{I}_{\mathrm{rel}}, \%\right): 299\left(\mathrm{M}^{+}+1,<1\right), 254$ (10), 157 (12), 143 (100), 101 (16), 88 (17), 58 (12). Found, \%: C 52.06; H 6.59; N 9.32. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OSe}$. Calculated, \%: C 52.17; H 6.74; N 9.36.
\mathbf{N}-(Benzo[4,5]imidazo[2,1-b]thiazol-3-ylmethoxy)-6-phenylselanyl-hexanamidine (8).
(7). Yield 47%. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.41-1.73(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 2.09\left(\mathrm{t}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.88\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 4.39(\mathrm{bs}, 2 \mathrm{H}$, NH_{2}), $5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.73(\mathrm{~s}, 1 \mathrm{H}$, thiazole proton), $7.22-7.47$ and $7.76-7.85$ (both m, 9 H , Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$). ${ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$: 26.24, 27.60, 28.97, 29.69, 31.03, $66.74,109.48,111.62,119.08,121.00,123.34,126.71,128.99,129.99,130.46,130.48$, 132.47, 148.34, 154.70, 157.03. Mass-spectrum, m/z ($\left.\mathrm{I}_{\mathrm{rel}}, \%\right): 472\left(\mathrm{M}^{+}+1,100\right), 188$ (70). Found, \%: C 56.01; H 5.21; N 11.99. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{OSSe}$. Calculated, \%: C 56.04; H 5.13; N 11.88.

N -(Benzo[4,5]imidazo[2,1-b]thiazol-3-ylmethoxy)-7-phenylselanyl-heptanamidine (9). Yield 53%. White crystals, m.p. $65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.24-1.72(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right), 2.09\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.89\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 4.38(\mathrm{bs}, 2 \mathrm{H}$, NH_{2}), $5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.73(\mathrm{~s}, 1 \mathrm{H}$, thiazole proton), 7.19-7.49 and 7.76-7.85 (both m, 9 H , Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$). ${ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$: 26.62, 27.78, 28.29, 29.32, 29.89, 31.08. 109.47, 111.62, 119.13, 120.99, 123.34, 126.66, 128.99, 130.46, 130.51, 132.42, 132.44, 148.40, 154.83, 157.06. Mass-spectrum, m/z ($\left.\mathrm{I}_{\mathrm{rel}}, \%\right): 486\left(\mathrm{M}^{+}+1,100\right), 329(50), 188$ (70). Found, \%: C 56.71; H 5.31; N 11.49. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{OSSe}$. Calculated, \%: C 56.90; H 5.40; N 11.54.
\mathbf{N}-(2-Metylsulfanylimidazo[2,1-b][1,3,4]thiadiazol-6-ylmethoxy)-7-phenyllselanylheptanamidine (10). Yield 21%. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.21-$ $1.67\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4}\right), 2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CCH}_{2}\right), 2.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.87(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, SeCH_{2}), $4.50\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.21-7.48(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) .7 .67\left(\mathrm{~s}, 1 \mathrm{H}\right.$, imidazole proton). ${ }^{13} \mathrm{C}$ NMR ($100.58 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 26.80,27.79,28.20,28.43,28.81,29.92,31.25,69.34$,
126.64, 128.97, 128.98, 130.54, 132.41, 132.42, 132.43, 134.91, 141.02. Mass-spectrum, m / z ($\mathrm{I}_{\mathrm{rel}}, \%$): $483\left(\mathrm{M}^{+}+1,100\right), 225$ (30). Found, \%: C 47.19; H 5.11; N 14.33. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{OS} 2 \mathrm{Se}$. Calculated, \%: C 47.29; H 5.22; N 14.51.
2-Chloro-3-[3-(6-phenylselanyl-hexyl)-[1,2,4]oxadiazol-5-yl]-pyridine (11). A suspension of N-hydroxy-7-phenylselanylheptanamidine (6) ($0.095 \mathrm{~g}, 0.35 \mathrm{nnol}$), 2-chloronicotinoyl chloride $(0.062 \mathrm{~g}, 0.35 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.098 \mathrm{ml}, 0.7 \mathrm{mmol})$ in toluene $(3 \mathrm{ml})$ was refluxed for 18 h . Reaction mixture was filtered and filtrate was evaporated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel (eluent hexane: EtOAc $2: 1$) to obtain desired product 11. Yield 78%. Yellow oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.40-1.80\left(\mathrm{~m}, 8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right), 2.82\left(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CCH}_{2}\right), 2.90(\mathrm{t}, 2 \mathrm{H}, J=$ $\left.6.0 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right), 4.48\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.21-7.49(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}$ and $5-\mathrm{H}), 8.37\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.0\right.$ $\mathrm{Hz}, \mathrm{J}_{2}=2.2 \mathrm{~Hz}, 4-\mathrm{H}$), $8.58\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 6-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100.58 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 25.93,26.79,27.76,28.48,29.30,29.89,120.96,122.36,126.62,128.95$, $130.49,132.39,140.42,149.80,152.30,171.18,172.36$. Mass-spectrum, $\mathrm{m} / \mathrm{z}\left(\mathrm{I}_{\mathrm{rel}}, \%\right): 421$ $\left(\mathrm{M}^{+}+1,100\right), 266$ (40). Found, \%: C 54.17; H 4.69; N 9.80. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{OSe}$. Calculated, \%: C 54.23; H 4.79; N 9.99 .
Synthesis of 6-(6-phenylselanylhexyl)-5,9-dihydro-8-oxa-5,7-diazabenzocycloheptene (12) and 6-[3-(benzoselenozol-2-ylsulfanyl)propyl]-5,9-dihydro-8-oxa-5,7diazabenzocycloheptene (19). Mixture of oxime 6 or 16 (1 mmol), 2-iodobenzyl bromide $(0.30 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.0366 \mathrm{~g}, 0.04 \mathrm{mmol})$, Xantphos $(0.0232 \mathrm{~g}, 0.04 \mathrm{mmol})$ and anhydrous $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.30 \mathrm{~g}, 4 \mathrm{mmol})$ in dry dioxane $(3 \mathrm{ml})$ was heated at $60^{\circ} \mathrm{C}$ for 12 h then at $120^{\circ} \mathrm{C}$ for 48 h in glass reactor under argon. Reaction mixture was diluted with ethyl acetate $(30 \mathrm{ml})$, filtered, solvent was removed under reduced pressure and crude residue was chromatographed on silica using ethyl acetate : hexane (1:2 tol:1) as eluent.
6-(6-Phenylselanylhexyl)-5,9-dihydro-8-oxa-5,7-diazabenzocycloheptene (12). Yield 34%. Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.24-1.72\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4}\right), 2.29$ $\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CCH}_{2}\right), 2.88\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right), 4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.24(\mathrm{~s}, 1 \mathrm{H}$, NH), 6.72 and 7.70 (both $\mathrm{m}, 9 \mathrm{H}, \mathrm{Ph}$ and $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100.58} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $22.96,23.72,27.33,28.90,29.58,33.79,77.11,117.31,121.24,126.64,128.22,128.97$, $130.06,130.85,132.40,139.74,157.06,167.73$. Mass-spectrum, $\mathrm{m} / \mathrm{z}\left(\mathrm{I}_{\mathrm{rel}}, \%\right): 388\left(\mathrm{M}^{+}+1\right.$, 100). Found, \%: C 61.91; H 6.11; N 7.00. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OSe}$. Calculated, \%: C 62.01; H 6.24; N 7.03 .

6-[3-Benzoselenazol-2-ylsulfanylpropyl)-5,9-dihydro-8-oxa-5,7-diazabenzocyclo-heptene

 (19). Yield 32%. White crystals, m.p. $82-83^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 2.26$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.54\left(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CCH}_{2}\right), 3.47\left(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 4.93(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{OCH}_{2}$), 6.76-7.39 and 7.72-7.78 (both $\mathrm{m}, 8 \mathrm{H}$, both $\mathrm{C}_{6} \mathrm{H}_{4}$). ${ }^{13} \mathrm{C}$ NMR (100.58 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 27.91,32.02,32.89,77.08,117.59,121.23,122.70,124.32,124.42,126.20$, $127.55,128.26,130.10,138.07,139.86,154.31,156.69,168.62$. Mass-spectrum, $\mathrm{m} / \mathrm{z}\left(\mathrm{I}_{\mathrm{rel}}\right.$, $\%): 403\left(\mathrm{M}^{+}+1,100\right), 189$ (95). Found, \%: C 53.54; H 4.14; N 10.32. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OSSe}$. Calculated, \%: C 53.73; H 4.26; N 10.44 .In vitro cytotoxicity assay. Monolayer tumor cell lines -HT-1080 (human fibrosarcoma), MG-22A (mouse hepatoma), 3T3 (mouse Swiss Albino embryo fibroblasts), - were cultured in standard medium (Dulbecco`s modified Eagle`s medium; "Sigma") supplemented with 10% fetal bovine serum ("Sigma"). Tumor cell lines were obtained from the "ATCC". After the ampoule had thawed, cells from one to four passages were used in three concentrations test compound: 1,10 and $100 \mu \mathrm{~g} \mathrm{ml}^{-1}$. About 10×10^{4} cells ml^{-1} were placed in 96 -well plates immediately after compounds were added to the wells; the volume of each plate was $200 \mu \mathrm{l}$. The control cells without test compounds were cultured on separate plate. The plates were incubated for $72 \mathrm{~h}, 37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. The number of surviving cells was determined using tri(4dimethylaminophenyl)methyl chloride (crystal violet: CV) or 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolinium bromide (MTT) ${ }^{\text {XII, XIII }}$. The quantity on the control plate was taken in calculations for $100 \% \mathrm{LD}_{50}$ was tested according „Alternative Toxicological Methods" ${ }^{\text {XIV }}$. The program Graph Pad Prism ${ }^{\circledR} 3.0$ was used for calculations ($\mathrm{r} \square<0.05$.).

REFERENCES

I. (a) Kjarer, A.; Skrydstrup, T. Acta Chem. Scand., Ser. B., 1987, 41, 29-33; (b) Trofimov, B.A.; Schmidt, E.Yu.; Mikhaleva, A.I.; Pozo-Gonzalo, C.; Pomposo, J.A.; Salsamendi, M. Protzuk, N.I.; Zorina, N.V.; Afonin, A.V.; Vashchenko, A.V.; Levanova, E.P.; Levkovskaya, G.G.; Chem.- Eur. J.., 2009, 15, 6435-6445; (c) Below, H.; Bulka, E.; Geisler, K.; Kuenzler, A.; Langer, P.; Pfeiffer, W.-D. Synthesis, 2004, 97-105; (d) Domasevich, K.V.; Skopenko, V.V.; Rusanov, E.B. Russ. J. Inorg. Chem.,1997, 42, 881-884; (e) Xu, J.; Wu, L.; Huang, X. J. Org. Chem., 2011, 76, 5598-560; (f) Kitahara, K.; Toma, T.; Shimokawa, J.; Fukuyama, T. Org. Lett., 2008, 10, 2259-2261; (g) Back, T.G.; Moussa, Z. Org. Lett., 2000, 2, 3007-3009; (h) Kim, S.; Lee, T.A. Synlett, 1998, 950-951; (i) Back, T.G.; Moussa, Z.; Pervez, M. J. Org. Chem., 2002, 67, 499-509; (j) Messali, M.; Christiaens, L.E.; Alshahateet, S.F.; Kooli, F. Tetrahedron Lett., 2007, 48, 74487451;
II. (a) Naithani, R. Mini Rev. Med. Chem., 2008, 8, 657-668; (b) Hill, M.; Meat, J. J. Clin. Nutr., 2002, S36-S41; (c) Moyad, M.A. Urology, 2002, 59, 9-19.
III. Zheng, H.; Combs, G.F., Jr. J. Nutr. Biochem., 2008, 19, 1-7.
IV. Kumar, K.; Gupta, B.D. J. Organomet. Chem., 2011, 696, 3343-3350.
V. (a) Goldstein, B.M.; Kennedy, S.D.; Hennen, W.J. J. Am. Chem. Soc.,1990, 112, 8265- ; (b) Srivastava, P.C.; Robins, R.K. J. Med. Chem.,1983, 26, 445-
VI. Arsenyan, P.; Rubina, K.; Shestakova, I.; Domracheva, I. Eur. J. Med. Chem., 2007, 42, 635-640.
VII. Arsenyan, P.; Paegle, E.; Belyakov, S.; Shestakova, I.; Jaschenko, E.; Domracheva, I.; Popelis, J. Eur. J. Med. Chem., 2011, 46, 3434-3443.
VIII. Abele, E.; Popelis, J.; Shestakova, I.; Domracheva, I.; Arsenyan, P.; Lukevics, E. Chem. Heterocycl. Comp., 2004, 40, 742-746.
IX. (a) Dimmock, J.R.; Kumar, P.; Chen, M.; Quasil, J.W.; Yang, J.; Allen, T.M.; Kao, G.Y. Pharmazie, 1995, 50, 449; (b) Burns, M.R. PCT Int. WO Pat. 0172685 (2001); Chem. Abstr., 2001, 135, 272682q; (c) Madelmont, J.-C.; Chezal, J.-M. PCT Int. WO Pat. 200812782 (2008); Chem. Abstr., 2008, 148, 214964d; (d) Cheung, A.W.; Ferguson, S.B.; Foley, L.H.; Lovey, A.J. PCT Int. WO Pat. 0035856 (2000); Chem. Abstr., 2000, 133, 58614j; (e) Handa, H.; Kawai, S.; Kusu, N. Jpn. Pat. 2005232101 (2005); Chem. Abstr., 2005, 143, 241994d; (f) Kalvinsh, I.; Abele, R.; Golomba, L.; Rubina, K.; Visnevska, J.; Beresneva, T.; Shestakova, I.; Jaschenko, E.; Bridane, V.; Abele, E. Heterocyclic Letters, 2011, 1 47-54.
X. Xu, G.; Lee, L.; Connolly, P.J.; Middleton, S.A.; Emanuel, S.L.; Hughes, T.V.; Abad, M.C.; Karnachi, P.C.; Wetter, S.K. PCT Int. WO Pat. 03076400 (2007); Chem. Abstr., 2007,147, 189189m.
XI. (a) Abele, E.; Lukevics, E. Chem. Heterocycl. Comp., 2001, 37, 141-169; (b) Abele, E.; Abele, R.; Dzenitis, O.; Lukevics, E. Chem. Heterocycl. Comp., 2003, 39, 3-35; (c) Abele, E.; Abele, R.; Lukevics, E. Chem. Heterocycl. Comp., 2003, 39, 825-865; (d) Abele, E.; Abele, R.; Lukevics, E. Chem. Heterocycl. Comp. 2004, 40, 1-15; (e) Abele, E.; Abele, R.; Rubina, K.; Lukevics, E. Chem. Heterocycl. Comp., 2005, 41, 137-162; (f) Abele, E.; Abele, R.; Lukevics, E. Chem. Heterocycl. Comp., 2007, 43, 387-407; (g) Abele, E.; Abele, R.; Lukevics,
E. Chem. Heterocycl. Comp., 2007, 43, 945-977; (h) Abele, E.; Abele, R.; Lukevics, E. Chem. Heterocycl. Comp., 2008, 44, 637-649; (i) Abele, E.; Abele, R.; Lukevics, E. Chem. Heterocycl. Comp., 2008, 44, 769-792; (j) Abele, E.; Abele, R.; Lukevics, E. Chem. Heterocycl. Comp., 2009, 45, 1420-1440; (1) Abele, E.; Abele, R.; Golomba, L.; Visnevska, J.; Beresneva, T.; Rubina, K.; Lukevics, E. Chem. Heterocycl. Comp., 2010, 46, 905-930; (k) \square bele, E.; \square bele, R.; Golomba, $\square . ;$ Viš \square evska, J.; Beres \square eva, T.; Rubina, K. Latvian J. Chem., 2011, 50, 205-222; (m) Abele, E. Latvian J. Chem., 2012, 51, 83-92; (n) Abele, E. Heterocycl. Lett., 2012, 2, 515-540; (o) Abele, E. Heterocycl. Lett., 2013, 3, 229-245.
XII. Fast, D.J.; Lynch, R.C.; Leu, R.W. J. Leuckocyt. Biol. 1992, 52, 255.
XIII. Freshney, P.J. Culture of Animal Cells (A Manual of Basic Technique), WileyLiss, New York, 1994, pp. 296-297.
XIV. http://iccvam.niehs.nih.gov/methods/invidocs/guidance/iv guide.htm [2004.01.10]

Received on November 25, 2014.

